A numerical scheme for morphological bed level calculations

نویسندگان

  • Wen Long
  • James T. Kirby
  • Zhiyu Shao
چکیده

The typical equation for bed level change in sediment transport in river, estuary and near shore systems is based on conservation of sediment mass. It is generally a nonlinear conservation equation for bed level. The physics here are similar to shallow water wave equations and gas dynamics equation which will develop shock waves in many circumstances. Many state-of-art morphological models use classical lower order Lax–Wendroff or modified Lax–Wendroff schemes for morphology which are not very stable for long time sediment transport processes simulation. Filtering or artificial diffusion are often added to achieve stability. In this paper, several shock capturing schemes are discussed for simulating bed level change with different accuracy and stability behaviors. The conclusion is in favor of a fifth order Euler-WENO scheme which is introduced to sediment transport simulations here over other schemes. The Euler-WENO scheme is shown to have significant advantages over schemes with artificial viscosity and filtering processes, hence is highly recommended especially for phase-resolving sediment transport models. © 2007 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of a numerical model to reproduce event‐scale erosion and deposition distributions in a braided river

Numerical morphological modeling of braided rivers, using a physics-based approach, is increasingly used as a technique to explore controls on river pattern and, from an applied perspective, to simulate the impact of channel modifications. This paper assesses a depth-averaged nonuniform sediment model (Delft3D) to predict the morphodynamics of a 2.5 km long reach of the braided Rees River, New ...

متن کامل

Numerical investigation of free surface flood wave and solitary wave using incompressible SPH method

Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...

متن کامل

MODELING OF GROUNDWATER FLOW OVER SLOPING BEDS IN RESPONSE TO CONSTANT RECHARGE AND STREAM OF VARYING WATER LEVEL

This paper presents an analytical model characterizing unsteady groundwater flow in an unconfined aquifer resting on a sloping impervious bed. The aquifer is in contact with a constant water level at one end. The other end is connected to a stream whose level is increasing form an initial level to a final level at a known exponentially decaying function of time. Moreover, the aquifer is repleni...

متن کامل

Unconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation

In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...

متن کامل

Morphological, Sedimentary and Hydrodynamic Study in Intersection of the Arvand River and the Karun River by Using Field Data and Numerical Modeling

Providing faultless proceeding of the engineer in order to protect the rivers, requires understanding the morphological behavior of the river and studying the hydrodynamic phenomena of the area. The intersection of the Karun rivers as the largest and longest river in Iran with the Arvand border river is of considerable importance due to its strategic location. In this paper, using field measure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007